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Abstract— This paper revises and extends the problem of
robust singularity and joint limits avoidance to the cooperative
task-space using unit dual quaternion framework—ensuring
singularity-free coupled representation of the cooperative space.
The research is paramount to cooperative control applications
within flexible manufacturing systems and poorly structured
environments where robustness and reactiveness play a sig-
nificant role. Singularity-robust techniques are proposed to
control cooperative task primitives while dynamically avoid-
ing kinematic singularities for redundant and non-redundant
cooperative task trajectories. A task self-motion, which uses the
nullspace of the cooperative task, is also exploited to avoid joint
limits or singularities and to define task-priority controllers.
Simulated and experimental results illustrate the effectiveness
of the proposed singularity-robust and task-priority primitive
controllers and the usefulness of singularity-robust solutions
and joint limits avoidance in the cooperative task-space.

I. INTRODUCTION

The integration of multiple robotics arms working together
is not trivial [1], and great amount of research has focused
on addressing the complexities of multi-arm manipulation
[2]–[8]. With the hypothesis of a tightly grasped object,
Uchiyama and Dauchez [3] introduced the concept of a
symmetric control scheme based on the relationships of
forces and velocities whereby four physically meaningful
variables were indirectly extracted by integrating the veloci-
ties: absolute and relative positions; and absolute and relative
orientations between the arms [1]. In [5], the same variables
were taken to compose a new space, namely the cooperative
task-space [5], [6]—relaxing the firmly grasping constraint
which in turn empowered the analysis and enabled simply
considering coordinated movements between arms. Whereas
in [5], Cartesian coordinates and rotation matrices were used
for representing translations and orientations in the coopera-
tive space, Caccavale et al. [6] considered a unit quaternion-
based singularity-free representation for orientations.

A more efficient representation was proposed by [7] based
on unit dual quaternions and developed upon the foundations
on the previous works of Connolly and Pfeiffer [4] and
Khatib [2]. The cooperative dual task-space (CDTS) relies on
dual quaternion algebra to represent the cooperative elements
without singularities and without decoupling orientation and
translation. The use of a coupled non-minimal and more
efficient representation further enlightens task definition,
system description, and eases extensions concerning multi-
arm and human-robot manipulation. Moreso, the proposed
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coupled representation eases the deduction and analysis of
geometric parameters related to the cooperative variables [1],
[9], and is considerably more intuitive from the control point
of view for being more connected to the sensor space [10].

The control technique proposed in [7] stems from a direct
and instantaneous least square minimization of a task func-
tion [11]—therein defined as the cooperative manipulation
task—similarly to classic task-space controllers. The solution
thus neglects the significant role of kinematic singularities
and undesired poses, and also disregards the existence of
multiple paths for the robot links without disturbing the end-
effector configuration due to task-space redundancy—namely
the possibility of self-motion. However, it is well-known
that applications in the cooperative task-space are prone
to further interaction with joint limits, singularities and
undesired configurations due to the increased complexity of
the space and the additional constraints from the cooperative
task. Hence, it is central for real cooperative manipulation
applications to cope with task-space singularities, joint limits,
and task-space redundancy; yet very few solutions have been
extended to the cooperative task-space—despite advantages
for such a complex framework. Particularly for the CDTS
[7], there is no result in the literature concerning the design
and implementation of singularity avoidance techniques.

In this context and in order to ensure proper manipulability
through the whole cooperative task-space, this paper ad-
dresses the problem of singularity and joint limits avoidance
for cooperative manipulation based on dual quaternion alge-
bra. We design novel controllers for geometric cooperative
task primitives using classic singularity-robust techniques for
single-arm robotic systems which are efficient for coopera-
tive tasks. The controllers also exploit the cooperative task
self-motion, which consists on movements of the robot links
that do not disturb the end effector configuration [12] and
provides further reactiveness during execution as to avoid
joint limits or singularities [13]. The original problem of
cooperative control based on the efficient CDTS representa-
tion from [7] is enlivened by explicitly avoiding undesirable
configurations from the arms that could degrade the overall
cooperative manipulation performance. Moreso, we consider
a controller invariant to base coordinate changes in contrast
to [7]—which might be key to an efficient cooperative
manipulation with different tasks and reference frames. To
demonstrate the implementation simplicity and effectiveness,
the solutions were evaluated within different simulated sce-
narios. Also, to better illustrate the usefulness of proper



singularity-robust solutions and joint limits avoidance in
the cooperative task-space, we performed experiments using
the NAO H25 robot which is considerably liable to reach
undesirable poses during the cooperative manipulation.

II. MATHEMATICAL BACKGROUND AND KINEMATIC
REPRESENTATION OF SERIAL MANIPULATORS

This section introduces concepts on dual quaternion rep-
resentation and the CDTS.
A. Dual quaternions applied to rigid motion representation

The algebra of quaternions [14] is generated by the
basis elements 1, ı̂, ̂, and k̂, which yields the set H ,{
η + µ : µ=µ1 ı̂+ µ2̂+ µ3k̂, η, µ1, µ2, µ3∈R

}
, where

ı̂, ̂, k̂ are quaternionic units such that ı̂2 = ̂2 = k̂2 = ı̂̂k̂ =
−1. Unit quaternions belong to a subset of H whose elements
are constrained to the three-dimensional unit sphere in R4,
that is, S3 , {x ∈ H : ‖x‖ = 1} where ‖x‖2 , xx∗ =
x∗x with x∗ , η − µ being the conjugate of x. Under
multiplication the set forms the Lie group of unit quaternions,
Spin(3), whose identity element is 1 and inverse is x∗ [14].
Analogously to the way that complex numbers are used to
represent rotations in the plane, unit quaternions yields three-
dimensional rotations. An arbitrary rotation φ around the
rotation axis n = nx ı̂ + ny ̂ + nz k̂ is represented by the
unit quaternion x = cos(φ/2) + sin(φ/2)n [15].

Similarly, the dual quaternion algebra completely de-
scribes the rigid body motion [14]. Thus, we consider the
following subset of dual quaternions with unit norm S ,{
x+ εx′ : x ∈ S3, x′ ∈ H, xx′∗+x′x∗=0

}
, where ε is

called dual unit and ε2 = 0, ε 6= 0. Under multiplication, the
subset S forms the unit dual quaternion group Spin(3)nR3,
whose identity element is 1 and group inverse is x∗—where
x∗ , x∗ + ε (x′) ∗ is the conjugate of x. An arbitrary
rigid displacement may be represented in Spin(3) n R3

by a translation p = px ı̂ + py ̂ + pz k̂—a pure quaternion
(isomorphic to R3)—followed by a rotation r ∈ Spin(3),

x = r + ε(1/2)pr. (1)

It is known that SE(3) is a non-commutative group,
and the same is valid for the unit dual quaternion group
which is a double cover of SE(3)—that is, if x and y
are unit dual quaternions, then xy 6= yx. Nonetheless,
Hamilton operators can be used for the commutation of dual
quaternions multiplications [1]. Thus, we shall consider the
dual quaternion mapping to R8 manifold vec : S → R8,

which satisfies vec z =
+

H (x) vecy =
−
H
(
y
)

vecx, where
+

H (·) ,
−
H (·) defined in [1] are the matrix form of the alge-

braic product. Also, using the definition of conjugate of dual
quaternions it is easy to show that vecx∗ = C8 vecx, where
C8 , diag(1,−1,−1,−1, 1,−1,−1,−1). An analogous
mapping can be defined for the quaternion product, that
is, vec4 : H → R4 such that for a quaternion z = xy,

one would have vec4 z =
+

H4 (x) vec4 y =
−
H4 (y) vec4 x,

[1]. Similarly, for a quaternion conjugate, we also have
vecx∗ = C4 vecx, where C4 , diag(1,−1,−1,−1).
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Fig. 1: CDTS representation of variables xa and xr.

B. Cooperative dual task-space (CDTS)

The CDTS is fully described by the cooperative variables
xa and xr defining respectively the relative and absolute
dual positions between left and right end-effectors, x1 and
x2, as shown in Fig. 1. The formal definition is as follows.

Definition 1: The relative and absolute dual positions are
xr , x

∗
2x1 (2)

xa , x2xr/2, (3)
where xr/2 is the unit dual quaternion that defines the
transformation corresponding to half of the angle φr around
the axis nr = ı̂nx+ ̂ny+ k̂nz of the quaternion P (xr) and
half of the translation between the two arms [7].

As shown in [7], [16], the relative dual quaternion Jacobian
satisfies the differential relation vec ẋr = Jxr

Θ̇, where

Θ ,
[
θT1 θT2

]T
(4)

is the vector composed by both arm’s joints

Jxr
=
[

+

H (x∗2)Jx1

−
H (x1)J∗x2

]
. (5)

Analogously, for absolute variables
vec ẋa = Jxa

Θ̇, (6)

where Jxa
=
−
H
(
xr/2

)
Jx2ext

+
+

H (x2)Jxr/2
in which

Jx2ext
=
[
08×dim θ1

Jx2

]
, dimθ1 corresponds to the

dimension of the vector θ1,

Jxr/2
=

 1
2

−
H4

(
r∗r/2

)
JP(xr)

1
4

(
−
H4

(
rr/2

)
Jpr

+
+

H4 (pr)JP(xr/2)

)


JP(xr/2)
corresponds to the four upper rows of Jxr/2

(5).
Although this paper does not address the issue of the

forces involved in the manipulation, we remark that forces
and moments can be represented directly in the CDTS [1].

III. SINGULARITY-ROBUST AND TASK-PRIORITY
CONTROL LAW FOR COOPERATIVE PRIMITIVES

In the context of Definition 1, the forward kinematics
model (FKM) of all feasible bi-manual tasks must be related
to the kinematics from both manipulators and, consequently,
they are function of the augmented joint vector Θ defined
in (4). Thus, any task primitive htask in the CDTS can
be described as htask = f task(Θ), and the differential
kinematics related to each task primitive yields vec ẋtask =
J taskΘ̇,where J task is a predefined Jacobian that relates Θ
(4) with the derivative of the task primitive.

From the relative and absolute dual positions defined in
(2)-(3), and the corresponding relative and absolute dual
quaternion Jacobians (5), (6), the lemmas [1] define the dif-
ferential kinematics for the cooperative geometric primitives.

Lemma 1: Consider the relative pose between arms de-
fined by the unit dual quaternion xr with differential kine-



matics given by vec ẋr = Jxr
Θ̇ (2),(5), then the relative

orientation between arms is given by the unit quaternion
rrel = P (xr) and the differential kinematics by vec4 ṙrel =
JP(xr)

Θ̇, where JP(xr)
corresponds to the four upper rows

of the relative dual quaternion Jacobian Jxr
.

Lemma 2: From (2), (5), the relative translation and dif-
ferential kinematics between arms are given by the quater-
nion prel=2D (xr)P (xr)

∗ and by vec4 ṗrel=Jpr
Θ̇, where

Jpr
= 2

−
H4 (P (x∗r))JD(xr)

+ 2
+

H4 (D (xr))C4JP(xr)
with JD(xr)

corresponding to the four lower rows of Jxr
.

Lemma 3: Let prel be the relative translation, the square
distance Jacobian Jd is the Jacobian that satisfies ċ = JdΘ̇,
where c , ‖prel‖

2 and Jd = 2 (vec4 prel)
T
Jpr

.
Lemma 4: From (3), (6), the absolute orientation and

differential kinematics are given by the unit quaternion
rabs = P (xa) and by vec4 ṙabs = JP(xa)Θ̇, where JP(xa)
corresponds to the four upper rows from Jxa

.
Lemma 5: From (3), (6), the absolute translation

and differential kinematics between arms are given by
pabs=2D (xa)P (xa)

∗ and by vec4 ṗabs=Jpa
Θ̇, where

Jpa
= 2

−
H4 (P (x∗a))JD(xa) + 2

+

H4 (D (xa))C4JP(xa)
with JD(xa) being the lower rows rows from Jxa

.
In this section, we address different control design strate-

gies for the geometric primitives derived from the CDTS.

A. Cooperative task primitive stability

To perform the two-arm control based on the previously
described primitives and possible combinations, we state an
error function based on the spatial difference between the
desired task, hdes, and the current cooperative primitive,
htask, in dual quaternion space, that is, he = h∗taskhdes.
When htaskequals to hdes, the spatial difference he is
1. This allows us to exploit an error function from [17]
which is invariant to coordinate changes, etask = 1 −
he = 1 − h∗taskhdes,if htask converges to hdes, the dual
quaternion error etask → 0. Rewriting the equation as
etask = (h∗des − h

∗
task)hdes, and regarding a constant

desired task objective, the error dynamics yields vec ėtask =

−
−
H (hdes) vec ḣ

∗
task. From the differential kinematics of the

cooperative primitives, Lemmas 1-5, the dynamics of the task
error is given by vec ėtask = −N taskΘ̇ where N task =
−
H (hdes)J

∗
task with J∗task = C8J task for the relative and

absolute dual quaternion Jacobians; and J∗task = C4J task
for the dual quaternion Jacobians from Lemmas 1,2,3 and 5.

In addition to the cooperative primitives describes in
Lemmas 1-5, we can define new cooperative tasks and
easily derive their error and differential kinematics by sim-
ply combining the primitives. For instance, the full dual
pose whereby we aim to control both relative and absolute
poses stems from both xr and xa, that is, vechtask =[

vecxTr vecxTa
]T

and N task =
[
NT
xr

NT
xa

]T
.

The aim of the control scheme is to synthesize a feedback
controller using the augmented joint vector (4) to make the
current pose converge to a desired reference using the dual

quaternion framework to avoid decoupling the rotational and
translational dynamics. In this sense, let us choose a classic
least square solution control law based on the inverse of
the task differential kinematics and using the right pseudo-
inverse of the cooperative task Jacobian N+

task, that is,

Θ̇ = N+
taskK vec etask. (7)

To address the stability issues of the closed-loop
system, let us choose the positive definite function
Vtask=(1/2) vec eTtask vec etask as Lyapunov function can-
didate, for any given cooperative task. From the Lya-
punov function time-derivative along t, that is, V̇task =
− vec eTtaskN taskN

+
taskK vec etask, it clear that the error

dynamics is exponentially stable for any positive definite
K—considering a well-posed cooperative task Jacobian
N task. The gain K defines the convergence rate and an H∞
performance regarding the noise to error attenuation can be
easily derived from [17] for any cooperative task.

B. Cooperative task-redundancy
It is interesting to highlight that the cooperative primitives

require different number of DOFs to be fully controlled.
The more complex the cooperative task, the more DOFs it
uses. Yet, some tasks may require less DOFs than available
from the augmented joint vector (4). The resulting task-
redundancy may be used to raise a bimanual self-motion
whereby motions of both manipulators links do not disturb
the cooperative task variable trajectory configuration.

Nonetheless, the least-square control law defined in (7)
do not exploits the available self-motion. Its attractiveness
lies on the least square property of the pseudoinverse that
generates minimum norm joint velocities for a given tra-
jectory. However, [18] proved that joint velocities are only
instantaneously minimized and can become arbitrarily large
near singular configurations.

Among the feasible solutions, we can regard optimization-
based techniques exploiting the existing task-redundancy
to perform secondary tasks and enhance the the flexibility
and reactiveness of the task execution.Thus, a more general
solution proposed by [19] for single-arm manipulation can
be extended to consider the cooperative task-redundancy,

Θ̇ = N+
taskK vec etask + P taskznull, (8)

where znull is an arbitrary control input, and P task = I −
N+

taskN task is the operator that projects znull onto the null
space of N task. The secondary task will be performed at
the best using the self-motion of the CDTS—that is, without
disturbing the trajectory of the main cooperative task—and
a secondary constraint can be optimized using a least-square
solution similarly to the main task optimization. Hence, given
a desired task snull with dynamics described by ˙snull =
JnullΘ̇, we can easily track its dynamics along the null
space of the first task with the input znull from (8), that is,
ṡ = JnullN

+
taskK vec etask + JnullP taskznull, such that

the minimal solution for
∥∥∥ṡnull − JnullΘ̇∥∥∥, yields znull =

(JnullP task)
+(
ṡnull −N+

taskK vec etask
)
.

The task-redundancy self-motion can be exploited to re-
cover from escapable singularities. Thus, the desired task



snull must be defined as a manipulability function that
quantifies the proximity of a singular configuration–usually,
with the determinant or using the minimum singular value.
We can extend the classic manipulability function from [20],
[21] to address the singularity avoidance within the CDTS,

snull =

√
det
{
N taskN

T

task

}
. It is easy to see that snull

is a non-negative scalar with zero value only when the
Jacobian is not full rank. The gradient of the manipulability
function over (4) may be inferred using Jacobi’s formula:
ṡnull = ∇snull = det

{
N taskN

T

task

}
tr{∂Ntask

∂Θ N+
task},

where the tr is the matrix trace. Hence, we can exploit the
the cooperative self-motion to optimize the manipulability
function as to escape singularities from both arms. The
advantages over traditional singularity avoidance technique
for a single-arm is the use of a single DOF optimization
task acting on both manipulators—using classic techniques,
one would be required to define a manipulability function
for each arm demanding the use of two DOFs at nullspace.

The idea of optimizing a secondary task can be extended
to avoid joint limits as in [19]. This can be extended to the
cooperative space by considering the augmented joint vector
(4), that is, snull = 1

2 (Θ− Θ̄)T (Θ− Θ̄), with Θ̄ being the
central joint values. The differential forward kinematics in
this case is given by ṡnull = (Θ− Θ̄)T Θ̇.

Moreover, during the trajectory execution, we may want
to prioritize some particular cooperative variables in contrast
to others. For instance, for a particular cooperative task, the
absolute position may be more relevant than both manipula-
tors orientation. Using a task-priority controller both relative
and absolute orientations may be modeled as secondary
optimization problems relaxing the number of constraints for
the main control problem. In addition, the cooperative self-
motion can also be used to optimize secondary constraints in
the lack of available DOFs—for instance, in the case where
there is only six DOFs available but we seek to control the
absolute cooperative position and both relative and absolute
orientations. In this scenario, the tasks may compete for the
motion in the null space hierarchically [22], [23] or within
a convex context as described in [24]. The latter technique
will be used throughout this paper, as it provides a better
enlightenment of the competition process. The resulting
cooperative task-priority controller for the primitives yields
Θ̇ = N+

taskK vec etask+P task (χznull,1 + (1−χ)znull,2) ,
(9)

where the cooperative self-motion dynamics is projected
upon both vector inputs with χ∈[0, 1] being a smooth func-
tion that yields importance to either secondary tasks,
znull,1=(Jnull,1P task)

+(
ṡnull,1−N+

taskKvec etask
)

znull,2=(Jnull,2P task)
+(
ṡnull,2−N+

taskKvec etask
)
,

(10)

where ṡnull,i and Jnull,i, i={1, 2}, are the secondary task
to be optimized and its corresponding Jacobian.

Remark 1: The cooperative task-redundancy based con-
troller can also be easily redefined as to use recent self-
motion strategies for single-arm manipulation, such as [22]
that regards k levels of the hierarchical subtasks or as in [13]

that regards a directional null space approach.

C. Singularity-robust task primitive controller
In the case of non-redudant cooperative tasks or in-

escapable singularities, self-motion can not be used since
there is only one feasible joint configuration for both arms to
achieve a desired cooperative task trajectory. Hence, the task
trajectory must be modified in order to avoid singularities.
In this scenario, the most classic techniques for singularity
avoidance are the use of truncated SVD pseudo-inverse or
Singularity Robust Inverses (SRIs) which yields a new task-
trajectory modifying the differential kinematics to avoid
singular configurations. Despite the importance within a
complex manipulation scenario, to the best of the authors
knowledge, there is no result in the cooperative manipula-
tion literature that explicitly concerns singularity-robustness
techniques—nor within existing control solutions based on
dual quaternion algebra. The attractiveness of combining
both unit dual quaternion representation and singularity
robust techniques lies in a fully representation and kinematic
singularity-free cooperative manipulation for redundant and
non-redundant tasks.

So, we must regard the least square solution for the
differential kinematics with the Moore-Penrose pseudoin-

vese, N †task = NT
task

(
N task N

T
task

)−1
.This, however,

will still yield problematic results when near singularity
regions. Analyzing the Jacobian through singular value de-
composition (SVD) results in N †task =

∑min{m,n}
i=1 σiuiv

T
i ,

where σi is a singular value with associated m-sized output
and n-sized input vectors ui and vi. When inverted we
have N †task =

∑min{m,n}
i=1

1
σi
uiv

T
i ,that will result in infinite

velocities whenever σi −→ 0. As a solution we may truncate
the velocity functions to zero when near any manipulator
singularities—known as truncated SVD. This might preserve
both arms’ integrity, keeping it from trying to reach impos-
sible positions, but at the expense of a smooth, continuous
trajectory.

A second strategy lies in modifying the trajectory of the
end effector to avoid singularities. This can be done by
adding a dampening factor λDLS to the Jacobian, such

as N †,DLStask = NT
task

(
N task N

T
task + λ2DLSI

)−1
.With

the addition of λDLS , the SVD of the inverted damped
least square (DLS) Jacobian then becomesN †,DLStask =∑min{m,n}
i=1

σi

σ2
i+λ

2uiv
T
i .We then notice that when σi is con-

siderably higher than λDLS , the output of the Jacobian will
remain mostly unchanged and when σi approaches λDLS
the resulting map will be half of the one obtained from
the Moore-Penrose pseudoinvese, only slightly altering the
cooperative task trajectory. This damped least square solution
ensures a continuity in the cooperative task trajectory, but as
a disadvantage it will add to the error’s norm.

For lower errors, Chiaverini [25] introduced a SRI strategy
for single-arms based on an adaptive dampening factor,

λSRI =

0, if σmin ≥ µ,(
1−

(
σmin

µ

)2)
λMax if σmin < µ.

(11)
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Fig. 2: Trajectory error norm for SRI and DLS techniques.

When the minimum singular value σmin is far from
the singular region µ, we do not add the dampening
factor. Also, when σmin is inside µ, we add a
dampening factor proportional to the distance from
the singular point. To further filter the result we
define theSRI for the cooperative space as N †,SRItask =

NT
task

(
N task N

T
task + λ2SRIuminu

T
min + β2I

)−1
. In

which umin is the direction of the minimal singular value
and β is an additional constant dampening factor such as
β2 � λ2 that serves as a contingency for the cases where
there are more than one singular value.

IV. SIMULATION AND EXPERIMENTS

This section presents experiments using the NAO robot,
that has five DOFs in each arm—thus being underactuated
and prone to kinematic singularities. The experiments will
take place on simulation, with tasks being performed on the
Virtual Robot Experimentation Platform (V-REP) as well as
on the physical robot, where we evaluate robustness when
there are real-world disturbances.

We propose that the robot perform a task such as carrying
a tray, in which we control absolute position, relative and
absolute orientation and relative distance between the arms.
Those tasks, together, will use all 10 DOFs of the augmented
task space forthe NAO’s arms. To evaluate the effects of
the dampening factors and how it modifies the trajectory
and avoids singularities, we propose a comparison between
the norm of resulting trajectory errors associated with each
method. We also aim to analyze this setup on the physical
robotand visualize the effects of the robot’s self motion, both
to describe secondary tasks and to avoid joint limits.

The simulation was set considering an absolute pose
reference and setting a relative distance of 0.3m, and a
mirrored configuration between the arms. It was configured
with a sample time of 5ms and was ran for both the DLS
inversion method, with λDLS = 10−4 and for the SRI, with
λMax = 10−2 , µ = 10−2 and β = 10−4.

As we can observe in the graph of Fig.2, the SRI converges
faster than the DLS. This can be understood by the fact
that the adaptive dampening factor has a lesser effect on
the trajectory for larger minimal singular values. Indeed this
difference is less noticeable when we reach the steady state.
The effector will converge to the desired pose in both cases,
but due to the greater impact the DLS solution has on the
trajectory, its convergence takes longer.

To further reduce the error we introduced the notion of
self motion, used here primarily to avoid joint limits and
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Fig. 3: (a) shows the main task-error for each pseudo-inverse
and(b) the secondary task error for the same application.
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Fig. 4: Pseudoinverse techniques in the NAO, in (a) the error
norm and in (b) the minimum singular value on the trajectory.

performing less priority tasks —in this case, absolute and
relative orientation control. The joint limit avoidance was
defined with a gain of 0.2, as for the the secondary tasks, in
accordance to (9), we used a gain of 0.8. The main task gain
was set as K = 0.4. We then repeated the experiment for all
three inversion methods in order to analyze their influence
on the cooperative trajectory error—the dampening values
were kept as in the previous experiment.

From Fig.3, the convergence speed for the main task
controller is faster than the one for the secondary task, which
could be explained by the nullspace action. Because of the
projector, we only have movements related to the secondary
task which will not affect the main task’s, resulting in idle
time for that specific motion.Also, when comparing all three
methods of inversion, it is clear that the Truncated Moore-
Penrose yields the worst result, as it introduces discontinu-
ities in every singular position.

In the physical platform we reduced the controlled prim-
itives to the absolute position and relative and absolute
orientations, leaving one DOF free, used to avoid joint limits
in the nullspace. This time we used λDLS = 10−3 and, for
the SRI, λMax = 10−2 , µ = 10−2 and β = 10−4.

Comparing the influence of the inversion methods on the
trajectory,as can be seen in Fig.4(a), the results were similar
to what we obtained from simulation. The truncated Moore-
Penrose did not converge due to discontinuities on its output.
Both dampened results converged, and the SRI kept the
trajectory further from singularities and with smaller steady-
state errors. This can be explained by the lesser influence
of λ on the SRI. From Fig.4(b) we see that no singular
configuration was reached.

With the SRI we also analyzed the effects of optimization-
based techniques in the nullspace for avoiding joint limits.
When joint limits are reached the robot has a mechanical
restrain that keeps it from continuing to move, affecting the
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Fig. 6: The plot (a) shows the robot joints along the trajectory
using the nullspace optimization whereas plot (b) shows that
without the nullspace the robot movement is hampered by
two joints reaching their limits.

steady state error. From Fig.6, we see that two joints reached
their limits, resulting in a larger error. When we add a task to
avoid those limits on the nullspace, it works without affecting
the effector’s position and thus the cooperative variables. In
Fig.5 we see that there is a reduction in the steady-state error.
In Fig.6(a) the joints previously limited are better positioned,
allowing the effector to move more freely, approach its target
pose and achieve a desired cooperative task.

V. CONCLUSION

This work used the algebra of dual quaternions for the
cooperative context of bi-manual manipulation. We extended
the strategies for joint limit and robust singularity avoidance
to a cooperative, task-oriented context, dynamically avoiding
kinematic singularities for redundant and non-redundant co-
operative task trajectories. A task self-motion defined over
the CDTS further enhanced reactiveness during execution to
avoid joint limits or singularities and allowed the definition
of task-priority controllers. Strategies proposed on the coop-
erative space were validated on an underactuated platform,
which adds to the model’s complexity for not having extra
DOFs when executing a combination of tasks—highlighting
the importance of proper singularity-robust solutions and
joint limits avoidance in the cooperative task-space.
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