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Abstract: Humans are capable of generating simulated mental worlds based on their past experiences and use such an
environment for prospecting, planning, and learning. Such capabilities could enhance current robotic systems, allowing
them to plan ahead based on predicted outputs, and even compare their performance with a different agent. In this work,
we propose a semantic robot modeling framework, which is able to express intrinsic semantic knowledge in order to better
represent the robot and its surrounding environment. We also show that such data can be used to automatically generate a
simulated model, allowing robots to simulate themselves and other modeled agents.
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1. INTRODUCTION
Learning by experience might be our first thought

when reckoning about the nature of learning. Indeed, our
first learning experiences as a toddler come from our in-
teraction with the environment and the observed outcome
of it. It was shown, however, that such learning tech-
niques are not limited to real-world interactions.

Early studies on cognitive science[1] showed that hu-
mans are able to simulate situations by revisiting past ex-
periences and learn by imagining possible outcomes of
novel actions. This complex principle consists of build-
ing a simulated world inside one’s mind, capable of work-
ing on its own, and then inferring about new ways of act-
ing, which can be later applied in real situations. Such
skill is paramount when planning about optimal ways to
act given certain circumstances. Humans tend to reason
about potential outcomes before performing critical ac-
tions.

The concept of mental simulation, although capable
of enhancing current robot learning and planning capa-
bilities, has yet to be thoroughly explored in the robotics
field. This work contributions are as follows:
• An expansion of the TOSM(Triplet Ontologic Seman-
tic Model)[2] in order to model and store robot descrip-
tion data.
• A parser capable of automatically generating a simu-
lated model of a robot by querying relevant information
described using the aforementioned framework. By us-
ing such approach, a robot can simulate itself without the
need for human intervention.

2. RELATED WORK
Methods of incorporating knowledge into robots have

been extensively studied in the past decades. Promi-
nent works like CYC[3] and SUMO[4], despite gather-
ing a substantial amount of manually encoded encyclope-
dic knowledge, lack the needed information to be applied

on the robotics field. The OMICS[5] project created a
common-sense database which contains required knowl-
edge in order for an indoor robot to successfully complete
a variety of tasks. In a similar fashion, RoboEarth[6] was
created to be the World Wide Web for robotics, a com-
plete database that would gather information about ob-
jects, tasks, places, and behaviors. This work, however,
was primarily focused on manipulation tasks. Such tasks
were also explored by KnowRob[7] and its recently pre-
sented successor[8], a knowledge processing system able
to perform reasoning using both a semantic knowledge
database and a mental simulation capable of replaying
past experiences in order to explore new outcomes.

The mental simulation concept was also applied to
several virtual and real agents. Leonardo, from [9],
was developed to infer human intentions by simulating
its own body model and acting on the human’s behalf.
Several other works used a ”putting yourself on other’s
shoes” approach [10], [11], [12]. [10] created a bot capa-
ble of anticipating it’s opponents actions, while [11] uti-
lized it’s own behavior model to predict an agent move-
ment. In [12], an animated mouse uses it’s own motor
and action representations to interpret and imitate the be-
haviors of similar counterparts. Nonetheless, such ap-
proaches are limited by the agent’s own model. Our work
aims to offer a tool to facilitate the simulation of one-
self and different agents, by proposing a semantic model
and a way to generate a simulated robot directly from the
modeled data.

3. FRAMEWORK OVERVIEW

Humans demonstrate an outstanding ability to gener-
ate, update and maintain spatial maps of known environ-
ments. Researches on the cognitive science and neuro-
science fields[13], [14] showed that the human brain has
a ”GPS” mapping system, with spatial scalability yet to
be seen in robotic systems. Aiming to match the brain
GPS capabilities, the TOSM was proposed[2]. This novel



Fig. 1 Triplet Ontologic Semantic Model (TOSM) rep-
resentation.

representation can be divided into three interconnected
models, as showed in Fig. 1.

The explicit model represents everything that can be
”seen.” Put differently, it can describe every information
the robot is able to obtain using its sensors, including
but not limited to shape, size, color, texture and three-
dimensional pose. This type of data can be easily ob-
tained and has been vastly employed in robotic applica-
tions. On the other hand, the implicit model subsumes
knowledge that cannot be directly extracted from sensory
data, hence needing to be inferred by reasoning about
the environment semantic information. This data ranges
from physical properties like mass and friction coeffi-
cients to object-relational information and high-level in-
ferences such as ”A laser range finder cannot detect a
glass door.” Lastly, the symbolic model defines every el-
ement using ”human language” such as name, descrip-
tion and symbols that can represent it according to human
standards.

The TOSM is not limited to objects and can also be
used to represent places and occupants (i.e. people).
They can be modeled in the same fashion as the objects,
and be combined generating high-level semantic maps of
an environment. In other words, the stored data can be
queried on-demand and used to build different maps, as
shown on Fig. 2. This eliminates the need of storing sev-
eral different maps, unifying the robot spatial knowledge
and reducing the storage requirement, which can grow in-
definitely the more the robot explores. In this work, we
expanded this usability, by defining guidelines on how to
represent a robot using the TOSM framework.

We aim to achieve human-like data modeling with
high modularity and expressiveness, further improving
the robot understanding of the world and its own struc-
ture as well. This would reduce the need for domain ex-

Fig. 2 On-demand map generation.

Fig. 3 Differential robot to be modeled.

pert tailored models and ease the integration between the
real-world and the mental simulated environment. Also,
by making this data available on a cloud database, it can
be easily shared by different robots and applications.

4. ROBOT SEMANTIC DESCRIPTION
In this work, TOSM was used to represent the robot

shown in Fig. 3. We chose to encode this data using
OWL(Ontology Web Language) triplets, in order to store
the data in a computer-readable format. OWL is a widely
used format, with several tools and applications openly
available. To manipulate and visualize the OWL triplets,
the Protégé framework[15] was used.

A robot can be divided into structural parts, sensors,
wheels and joints, each of them represented by explicit,
implicit and symbolic data. The explicit data, being sen-
sory data, is the same across all categories: pose, shape,
size, color and material. The symbolic information is
composed of a name and an identification number. The



implicit data, however, varies greatly. For structural parts,
it contains the main material and its mass. A wheel also
encodes whether or not it is an active or a passive wheel,
while joints store which two parts are connected. Finally,
each sensor type can have a different range of implicit in-
formation. For example, a camera can be described by
data like image resolution, field of view, frames per sec-
ond and range(for RGB-D cameras). On the other hand,
a laser range finder has properties such as range, angle
and number of samples. The OWL data graph is shown
on Fig. 4.

One of the main advantages of encoding this informa-
tion using OWL is the ease of doing semantic reason-
ing and querying. Such data can be used for prospecting
whether or not an object can be perceived by a certain
sensor, and then plan the subsequent action accordingly.
This is especially beneficial when reasoning about the
feasibility of a task. By knowing its own structure, prop-
erties and limitations, a robot can prospect if it is capable
of concluding such task successfully and, if not, request
assistance or reassign the task to another agent with more
significant chances of success, which can be inferred by
simulating the same task using the other agent’s model.

5. RESULTS AND DISCUSSION

Our work proposes to expand this usefulness by auto-
matically generating a simulated robot model using only
the available TOSM data. By combining semantic and
implicit data, we can fully generate a URDF(Universal
Robot Description Format) file and feed it automatically
to a ROS(Robot Operating System) based architecture.
Additionally, simulators typically require specific data,
such as inertia matrices and friction coefficients, which
might be difficult to obtain. By dividing the robot into
simplified shapes and combining it with their mass, the
inertia of the robot can be obtained. Moreover, as the
materials of the wheels and various surfaces can also be
stored, the relative friction coefficient can be queried,
which can be useful for both, generating the simulated
world and task planning on a large-scale outdoor environ-
ment. This can be seen as one of the key advantages of
TOSM when compared to existing representation models,
such as SRDF(Semantic Robot Description Format). The
same data that is used for map building, navigation and
planning, can be used to generate the simulated models.
Having an unified database reduces the need of updating
the same data in several locations, which is notably error-
prone, and also saves storage space.

The automatically generated robot simulation is shown
on Fig. 5. By comparing to the real robot on Fig. 3,
it can be observed that even though the overall shape of
the simulated robot resembles the real one, it is limited
by the use of primitive shapes. However, studies claimed
that, when performing mental simulations, humans do not
need to use a highly accurate physical model of the envi-

ronment in order to reason about their actions[16]. There-
fore, when performing mental simulations, it is sufficient
to produce a model that, if not physically accurate, is con-
sistent with the real world. Nonetheless, there are still ar-
eas where our framework alone is not sufficient and need
domain experts to tailor its values, such as projecting ef-
fort controllers for the simulated robot. The control re-
sponse was shown to be sensitive to changes on the robot
shape and dynamics, often requiring some fine tuning to
work properly.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented the application of a se-

mantic modeling framework to represent a mobile robot.
The expressiveness of the TOSM framework enabled us
to create a URDF model generator capable of building
a fully functional simulated robot without the need for
fine-tuning or human intervention. Such models can be
directly integrated into ROS and physics simulators like
Gazebo, which may allow future applications to simu-
late themselves and even other agents in order to enhance
its planning and learning capabilities. We plan to extend
such framework to also generate a full simulated map of
the environment and create a cloud knowledge database
where robots, objects and environment models can be
shared between different robotic applications.

ACKNOWLEDGEMENT
This research was supported by Korea Evaluation In-

stitute of Industrial Technology(KEIT) funded by the
Ministry of Trade, Industry & Energy (MOTIE) (No.
1415162366 and No. 1415162820)

REFERENCES
[1] D. Kahneman and A. Tversky, “The simulation

heuristic,” STANFORD UNIV CA DEPT OF PSY-
CHOLOGY, No. TR-5, 1981

[2] S. H. Joo, S. Manzoor, Y. G.Rocha, H. U. Lee and
T. Y. Kuc, “A Realtime Autonomous Robot Naviga-
tion Framework for Human like High-level Interac-
tion and Task Planning in Global Dynamic Environ-
ment,” arXiv preprint arXiv:1905.12942, 2019

[3] D. B. Lenat, “CYC: A large-scale investment in
knowledge infrastructure,” Communications of the
ACM, Vol. 38, No. 11, pp. 33-38, 1995

[4] I. Niles and A. Pease, “Towards a standard up-
per ontology, ”, Proceedings of the international
conference on Formal Ontology in Information
Systems-Volume 2001, pp 2-9, 2001

[5] R. Gupta, M. J. Kochenderfer, D. Mcguinness and
G. Fergunson, “Common sense data acquisition for
indoor mobile robots,” AAAI, pp 605-610, 2004

[6] M. Waibel, M. Beetz, J. Civera, R. d’Andrea,
J.Elfring, D. Galvez-Lopez, K. Häussermann, R.
Janssen, J. M. M. Montiel and A. Perzylo,
“Roboearth-a world wide web for robots,” IEEE
Robotics and Automation Magazine (RAM), Special



Fig. 4 OWLGraph of the created robot description ontology. Yellow circles represent a class, while the purple diamonds
are instances of such classes. Blue lines show a subclass relationship, green lines state which parts and joints are
contained in a given robot and purple lines express from which class an instance is derived. Finally, yellow and
orange lines specify the connection between two body parts and a joint.

Fig. 5 Generated simulated robot.

Issue Towards a WWW for Robots, Vol. 18, No. 2,
pp 69-82, 2011

[7] M. Tenorth and M. Beetz, “KnowRob: A
knowledge processing infrastructure for cognition-
enabled robots,” The International Journal of
Robotics Research, Vol. 32, No. 5, pp. 566-590,
2013

[8] M. Beetz, D. Beßler, A. Haidu, M. Pomarlan, A.
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